Scientists from MIT have designed a next-generation spacesuit that acts practically as a second skin, and could revolutionize the way future astronauts travel into space.
Astronauts are used to climbing into conventional bulky, gas-pressurized spacesuits, but this new design could allow them to travel in style. Soon they may don a lightweight, skintight and stretchy garment lined with tiny, muscle-like coils. Essentially the new suit acts like a giant piece of shrink-wrap, in which the coils contract and tighten when plugged into a power supply, thereby creating a "second skin."
"With conventional spacesuits, you're essentially in a balloon of gas that's providing you with the necessary one-third of an atmosphere [of pressure,] to keep you alive in the vacuum of space," lead researcher Dava Newman, a professor of aeronautics and astronautics and engineering systems at MIT, said in a statement.
"We want to achieve that same pressurization, but through mechanical counterpressure - applying the pressure directly to the skin, thus avoiding the gas pressure altogether. We combine passive elastics with active materials. ... Ultimately, the big advantage is mobility, and a very lightweight suit for planetary exploration."
Newman, who has worked for the past decade on a design for the next-generation spacesuit, describes the new garment in detail in the journal IEEE/ASME: Transactions on Mechatronics.
The MIT BioSuit's coils, which are a main feature of the outfit, are made from a shape-memory alloy (SMA). At a certain temperature, the material can "remember" and spring back to its engineered shape after being bent or misshapen.
Skintight suits are not a novel idea, but in the past scientists have always struggled with the question: how do you get in and out of a suit that is so tight? That's where the SMAs come in, allowing the suit to contract only when heated, and subsequently stretch back to a looser shape when cooled.
Though the lightweight suit may not seem at first like it can withstand the harsh environment that is outer space, Newman and her colleagues are sure that the BioSuit would not only give astronauts much more freedom during planetary exploration, but it would also fully support these space explorers.
Newman and her team are not only working on how to keep the suit tight for long periods of time, but also believe their design could be applied to other attires, such as athletic wear or military uniforms.
"An integrated suit is exciting to think about to enhance human performance," Newman added. "We're trying to keep our astronauts alive, safe, and mobile, but these designs are not just for use in space."
© 2025 NatureWorldNews.com All rights reserved. Do not reproduce without permission.