Pancreatic cancer takes the lives of at least 94 percent of patients within five years, and in 2013 it was ranked as one of the top 10 deadliest cancers. Because little is known about how pancreatic cancer behaves, patients often receive a diagnosis when it's already too late.

University of Washington scientists and engineers are developing a low-cost device that could help pathologists diagnose pancreatic cancer earlier and faster. The prototype replaces human hands to process the tissue, by performing the basic steps of a biosy. The team presented its initial results this month at the SPIE Photonics West conference, according to a press release announcing their work.

"This new process is expected to help the pathologist make a more rapid diagnosis and be able to determine more accurately how invasive the cancer has become, leading to improved prognosis," said Eric Seibel, a UW research professor of mechanical engineering and director of the department's Human Photonics Laboratory.

Currently, to diagnose cancer, a pathologist takes a biopsy tissue sample, then sends it to the lab where it's cut into thin slices, stained and put on slides, then analyzed optically in 2-D for abnormalities. This time consuming process would disappear, as UW's technology would process and analyze whole tissue biopsies for 3-D imaging.

"As soon as you cut a piece of tissue, you lose information about it. If you can keep the original tissue biopsy intact, you can see the whole story of abnormal cell growth. You can also see connections, cell morphology and structure as it looks in the body," Das said.

The research team is building a thick, credit card-sized, flexible device out of silicon that allows a piece of tissue to pass through tiny channels and undergo a series of steps that replicate pathology lab testing. The device harnesses the properties of microfluidics, which allows tissue to move and stop with ease through small channels without needing to apply a lot of external force. It also keeps clinicians from having to handle the tissue; instead, a tissue biopsy taken with a syringe needle could be deposited directly into the device to begin processing.

Researchers say this is the first time material larger than a single-celled organism has successfully moved in a microfluidic device. This could be a first step in automating analyses that usually are done by humans.