In the hunt for habitable planets around the galaxy, scientists may have just gotten some help. Remarkable research has, for the first time, suggested that extreme Neptune-like planets have the potential to become rocky, habitable worlds.

But how is this even possible? According to researchers at the University of Washington, two phenomena would have to occur: tidal forces and vigorous stellar activity. While these events certainly don't guarantee that gas giants like Neptune will suddenly become fit for life, they do give these worlds more of a chance than previously thought.

Experts have been searching for life-supporting planets outside our solar system for some time now. So far, nearly 2,000 exoplanets have been identified, and NASA officials recently affirmed their belief that an astounding 10 to 20 percent of all the stars in the sky host habitable planets.

However, even with all of these options, finding "Goldilocks" planets that are "just right" for life is easier said than done. Taking into account factors such as density, gravity, and distance from their star, scientists have currently ruled out planets that orbit red dwarf stars, and ones that simply can't hold onto their water.

But now new hope has come in the form of mini-Neptunes, which are similar to other gas giants but are only about 10 times the mass of Earth. In particular, doctoral student Rodrigo Luger and research assistant professor Dr. Rory Barnes, who led the research, focused on those around M dwarfs - stars that are smaller and dimmer than the Sun, with close-in habitable zones. (A habitable zone is the space around a star that might allow liquid water - a hallmark sign of life - on an orbiting rocky planet's surface).

Astronomers expect to find many Earth-like and "super-Earth" planets (up to five times the mass of Earth) in the habitable zones of these stars in coming years, so it's important to know if they might indeed support life. (Scroll to read on...)