Scientists from the ITMO University in partnership with Mariinsky Hospital in Saint Petersburg have successfully developed a new magnetically controlled drug that can condense blood clots using magnetic field.
At present, health care providers thrombolytic drugs are used intravenously during emergency situations concerning thrombosis. The Russian researchers described this procedure like "using a sledgehammer to crack a nut," because thrombolytic drugs do not target the clot, but instead spread over the whole circulatory system. This means that the drugs are being given in high dosage in hopes that even a small amount can reach in the area where the blood clot is located.
"Dissolving a little blood clot that blocked a vessel of only 1-2 mm in diameter, thrombolytic drugs negatively affect the entire network of blood vessels. In order to change the situation, we decided to develop a method of targeted drug delivery that would allow us to considerably reduce the dosage and ensure that the whole therapeutic effect is focused on the clot," explained Ivan Dudanov, head of the regional cardiovascular center of Mariinsky hospital and co-author of the study, in a statement.
The new drug, described in the journal Scientific Reports, uses a new composite material produced by the researchers to deliver thrombolytic enzymes in a safe and effective manner. The new composite material, which contains porous magnetite framework and molecules of urokinase, was used to create thrombolytic coating for artificial blood vessels and stable injectable solutions made of nanosized particles that can be easily localized near the clot by means of an external magnetic field.
Additionally, the magnetite framework also protects the enzymes from various present in the blood and can deactivate thrombolytic medications.
"We experimentally demonstrated that enzymes protected using our approach do not lose therapeutic properties over extended periods of time and even after repeated use. The rate, at which the new drug can dissolve the clot outperforms unprotected enzymes by about 4000 times," noted Andrey Drozdov, first author of the study and researcher at the Laboratory of Solution Chemistry of Advanced Materials and Technologies, in a press release.
All the material used for the new drug are potentially safe for humans and already have permission for intravenous injection.